Первый автосервисный журнал
Издается с 1997 года

Школа Алексея Пахомова (Ижевск). Диагностика Daewoo Matiz: включаем логику

Школа Алексея Пахомова (Ижевск). Диагностика Daewoo Matiz: включаем логику

Краткая история

Школа автодиагностики Алексея Пахомова начала работу в 2011 году. Основным направлением деятельности было выбрано производство обучающих видеокурсов. Самый первый курс «Диагностика бензиновых двигателей» имел такой значительный успех, что было решено продолжить работу в этом направлении. В результате был разработан широкий портфель видеокурсов, посвященных автодиагностике.

Сегодня школа вышла на качественно новый уровень. На платформе дистанционного обучения «Прометей» создана целая система по подготовке специалистов автосервиса в области диагностики двигателей и электронных систем автомобиля. Выпускниками, не теряющими связь со школой, стали более 2300 специалистов из разных городов России, ближнего и дальнего зарубежья. Статьи, которые будут размещаться в журнале «АБС-авто», по существу, являются переформатированными для печати видеоматериалами, подготовленными специа­листами школы для известного профессионального российского журнала.

За что я люблю профессию автодиагноста? А за то, что она заставляет думать. Не размахивать кувалдой, выбивая закисшие шкворни на «Газели» или чисто механически по много раз пройденному алгоритму менять тормозные колодки, а именно думать и анализировать. Бывает, что после трудового дня возвращаешься домой усталый, но в приподнятом настроении, если на работе попался интересный случай диагностики и была решена сложная и зачастую нетривиальная задача. А на следующее утро на работу опять не идешь, а как будто летишь на крыльях в предвкушении новых интересных загадок, которые частенько подкидывают диагностам наши автомобили.

Самое интересное заключается в том, что головоломки случаются не только на современных дорогих и «навороченных» автомобилях, но и на самых простых и давно изученных. И высший пилотаж диагностики в этом случае – работа мотортестером: глядя на осциллограмму напряжения того или иного сигнала, диагност должен увидеть происходящие в двигателе процессы, оценить качество их протекания, обнаружить отклонения (зачастую чуть заметные!) и сделать правильные выводы.

Очень интересный случай, о котором я хочу рассказать, произошел, как ни странно, на автомобиле Daewoo Matiz. Казалось бы, куда проще? Маленькая дешевая машинка, ремонт и обслуживание давно освоены всеми автосервисами, что там может еще быть непонятно? Двигатель уже без «трамблера», с тремя катушками зажигания, по одной на каждый цилиндр. Однако появившаяся однажды проб­лема заставила владельца безуспешно объехать несколько сервисов, на которых диагносты лишь развели руками. Ну что ж, тем интереснее!

Итак, Daewoo Matiz, год выпуска 2008-й, 3-цилиндровый двигатель F8V, блок управления Sirius D32. Рассказ клиента, как это иногда бывает, никакой подсказки не дал. Вроде когда-то был удар в заднее крыло, затем автомобиль простоял полгода, затем двигатель завели и даже какое-то время машинка ездила. А с некоторых пор двигатель начал глохнуть в движении. На холостом ходу как будто даже и ничего, а вот в движении – проблемы.

Ладно, хоть что-то. Попробуем сами осмотреть и послушать двигатель. В первую очередь пытаемся запустить. Двигатель завелся быстро и на первый взгляд без каких-либо проб­лем. Работает на холостом ходу ровно, если это слово вообще применимо к плохо уравновешенному трехцилиндровому мотору. Ну скажем так: работает, как все подобные двигатели.

Пробуем дать «газу», благо, что дроссель здесь классической конструкции, с тросовым приводом от педали акселератора. Частота вращения растет, и вдруг в какой-то момент мотор «затыкается», словно вдруг прекратилась подача топлива. Через две-три секунды вновь оживает, опять раскручивается и опять останавливается. Вот оно!

Ну что, проблема, как говорится, имеет место быть. Причем проблема настолько явная, что не найти ее причину для профессионала непростительно! Нет, ну правда: когда клиент говорит, что его автомобиль «иногда чуть-чуть делает как-то вот так» или «жрет бензин» – это одно. А когда мы явно видим раскачку частоты вращения и остановку двигателя, то это, согласитесь, совсем другое! И это другое найти значительно проще. Почему же тогда владельцу автомобиля ничем не помогли на тех сервисах, где он уже успел побывать? Возможно, потому, что в памяти блока управления двигателем не зафиксировано никаких кодов неисправностей.

Однако пора приступать к делу. Не будем мудрить, а попробуем для начала просто подключить сканер и посмотреть основные параметры двигателя при работе на холостом ходу (илл. 1).

Илл. 1
Илл. 1

Что можно сказать, глядя на эти параметры? Во-первых, двигатель прогрет, а дроссель закрыт полностью. Во-вторых, давление во впускном коллекторе очень хорошее, всего 37 кПа. Значит, с высокой долей вероятности нет никаких проблем с фазами газораспределения и углом опережения зажигания.

Хочу отметить, что давление во впускном коллекторе иногда называют вакуумом. Я не люблю термин «вакуум». На мой взгляд, он здесь неуместен и создает путаницу. Во впускном коллекторе, конечно же, давление. Да, оно ниже атмосферного, а в быту такое давление принято называть вакуумом. Но это в быту, а диагност должен мыслить так: во впускном коллекторе присутствует давление. Такое понимание представляется правильным хотя бы потому, что датчики давления во впускном коллекторе показывают именно давление, причем отсчет ведется от абсолютного нуля, а отнюдь не вакуум. И это давление мы и видим на экране сканера.

И еще диагност должен понимать важную вещь: давление во впускном коллекторе – параметр интегральный, зависящий от целого ряда факторов. Поэтому логика здесь работает, образно говоря, только в одну сторону. Если давление достаточно низкое, на уровне 35–40 кПа, то с двигателем все хорошо. А если давление повышено, например, до 60 кПа, то где-то есть проблема, но где именно – сказать сложно, здесь нужны дополнительные проверки. Это может быть и подсос воздуха в задроссельное пространство, и неверные фазы газораспределения, и забитый выпускной тракт. Все, что угодно! Любое отклонение работы двигателя от оптимального режима приводит к росту давления во впускном тракте.

Но в нашем случае значение давления такое, что мы можем уверенно сказать: никаких серьезных проблем нет, двигатель вполне себе прилично работает. Осталось лишь найти причину его остановки.

Продолжим рассуждения, глядя на экран сканера. Значение напряжения бортовой сети очень хорошее, оно составляет 14,3 В, а это значит, что с генератором явно проблем нет. Хорошо, учтем. Коэффициент коррекции подачи топлива вроде как немного ушел в отрицательную область и равен –7%, но это далеко не катастрофическое значение, да и после окончательного прогрева двигателя оно может измениться.

Значение расхода воздуха в 76 мг/такт и положение регулятора холостого хода 38 шагов являются типичными для этого двигателя. Здесь для диагноста также нет никакой подсказки.

Что ж, малой кровью обойтись не удалось, придется копать глубже. И прежде всего открыть базу данных Chevrolet TIS и изучить документацию на этот двигатель. Замечу, что работа с базами данных – один из обязательных навыков автодиагноста.

В базе нас в первую очередь интересует электрическая схема системы управления двигателем. Для удобства она разбита на несколько частей. Бегло просмотрев все, выясняем, что данный двигатель оборудован датчиками положения коленчатого вала и распределительного вала. В документации они обозначены как CranK shaft Position (CKP) Sensor – датчик положения коленчатого вала (илл. 2) и CaM shaft Position (CMP) Sensor – датчик положения распределительного вала (илл. 3).

Илл. 2
Илл. 2
Илл. 3
Илл. 3

Как известно, электронному блоку управления для подачи топлива и искры в точно заданный момент нужна привязка к вращению коленчатого вала, иначе говоря, синхронизация. Чаще всего она осуществляется по сигналам датчиков положения коленчатого и распределительного валов. Исходя из опыта, звук работы двигателя и его поведение в момент проявления дефекта явно напоминают срыв синхронизации. Поэтому первым делом попробуем подключиться к выходам обоих датчиков мотортестером и оценить их сигнал (илл. 4).

Илл. 4
Илл. 4

Прежде всего:

• осциллограмма желтого цвета – это импульсы синхронизации, соответствующие моментам искрообразования (по сути, импульсы искры);

• осциллограмма зеленого цвета – напряжение на выходе датчика положения распределительного вала;

• осциллограмма красного цвета – напряжение датчика положения коленчатого вала.

Начинаем рассуждения. Даже на первый взгляд вывод совершенно очевиден: проблема есть, и проблема явная. Теперь попробуем включить логику и дойти до результата.

Моменты искрообразования отмечены на иллюстрации цифрой 1. Несмотря на очень искаженную форму сигнала ДПРВ, искра все-таки есть. Хорошо, примем это к сведению.

Далее. Осциллограмма ДПРВ зеленого цвета отображает прямоугольные импульсы с этого датчика. Но на линии нуля явно видны искажения (цифра 3 на илл. 4), причем очень характерной формы, похожей на горку. Сопоставив их с моментами появления искры, очень легко сделать вывод, что эти искажения совпадают с периодами накопления энергии в катушках зажигания, и такая форма говорит об отсутствии нормального соединения массы. О том, как проверить качество питания и массы, я подробно рассказывал в одной из предыдущих статей, но вкратце напомню: эта горка, или подскок напряжения, возникает на паразитном сопротивлении, попросту говоря, на плохом соединении массы. Ток в катушках нарастает плавно и в соответствии с ним так же плавно нарастает напряжение.

Установив измерительную линейку, убеждаемся, что подскок напряжения составил целых 0,7 В! Это весьма значительная потеря. Ладно, запомним и идем дальше.

Совсем интересен момент, обозначенный цифрой 2. Это очень необычный всплеск напряжения. Откуда он появился? Поясню чуть позже, а пока рассмотрим на осциллограмме фрагмент, соответствующий моменту «затыка» двигателя (илл. 5).

Илл. 5
Илл. 5

Этому событию предшествовали очень сильные искажения формы сигнала ДПРВ и линии нуля. Настолько сильные, что в какой-то момент произошло нечто, и искрообразование прекратилось совсем. Все, двигатель начал останавливаться, что и было явно слышно при попытке открыть дроссель. И опять видны всплески на осциллограмме ДПРВ (да и ДПКВ тоже)!

Такие вещи однозначно говорят о проблеме с массой, причем проблеме настолько серьезной, что ЭБУ на короткий промежуток времени попросту теряет питание и перезагружается. Что и проявляется как «затык» двигателя на несколько секунд.

Внимательно рассмотрим еще раз электрические схемы (илл. 2, илл. 3). Как и положено, масса ДПРВ берется непосредственно от блока управления двигателем. А сам блок, если верить схеме, подключен к точке массы на двигателе через контакты разъема 3, 33, 63, 67 и 28. Точка подключения, согласно схеме, G106. Отлично! А где она находится на двигателе?

База данных содержит не только электрические схемы, но и схемы расположения датчиков, жгутов проводов и точек подключения масс. Находим точку G106 на двигателе, она расположена под стартером (илл. 6).

Илл. 6
Илл. 6

Поднимаем автомобиль на подъемнике – так и есть! Болт массы едва прикручен, клемма уже давно окислилась. Тщательно очищаем как клемму, так и место ее крепления (илл. 7).

Илл. 7
Илл. 7

Масса в этом месте давно уже мешала нормальной работе двигателя, а при повышении частоты вращения и, соответственно, росте тока через катушки зажигания приводила к потере питания ЭБУ. Приведя все в порядок и затянув болт, заводим мотор и с удовлетворением убеждаемся, что проблема решена.

Но кое-что я припас, как говорится, на десерт. Давайте вернемся к осциллограмме ДПРВ и обратим внимание на вот этот выброс напряжения (илл. 8).

Илл. 8
Илл. 8

Откуда он? Еще раз внимательно изучаем электрическую схему (илл. 3). Питание датчика положения распределительного вала берется из той же точки, что и питание соленоида системы EVAP, или улавливания паров бензина. А так как соленоид – это все-таки катушка, обладающая заметной индуктивностью, то в момент пропадания массы на нем возникает всплеск напряжения самоиндукции, аналогично тому, как это происходит в катушках зажигания. Именно поэтому мы и видим на осциллограмме ДПРВ всплеск напряжения до 20 В.

Какова мораль истории? Она весьма проста. Первое – нужно обязательно иметь под рукой базы данных и пользоваться ими. Каждый диагност буквально обязан уметь читать электрические схемы и понимать работу их элементов.

И второе – диагностика отнюдь не сводится к считыванию кодов неисправностей. Кодов может и не быть, и описанный случай – полное тому подтверждение. Как поступать в подобной ситуации? Ответ очень прост: применять мотортестер! Всего лишь сняв осциллограмму сигнала двух датчиков и чуть подумав, мы нашли не самый простой в поиске дефект.

Адрес редакции

111033 Москва, ул. Самокатная, 2а, стр.1, офис 313

На карте

Контакты

Тел.: (495) 361-1260

E-mail: отправить письмо

Социальные сети

Журнал «АБС-авто» © 2018, все права защищены