Первый автосервисный журнал
Издается с 1997 года

Теория и практика применения удлиненных свечей ДВС

Теория и практика применения удлиненных свечей ДВС

Среди множества человеческих качеств имеется одно интересное – желание что-то изменить или улучшить. При эксплуатации автомобиля, помимо необходимого технического обслуживания по регламенту, появляется потребность улучшить его динамические и экономические характеристики. Одна из таких потенциальных потребностей – улучшение горения топливно-воздушной смеси (ТВС) в двигателе внутреннего сгорания (ДВС). Существенным компонентом, оказывающим влияние на качественный процесс горения в цилиндре, является свеча зажигания. Разговор как раз о ней.

В ДВС электроискровое зажигание используется наиболее часто. В большинстве – это электроискровые свечи зажигания (ЭСЗ), и они расположены так, что центры воспламенения (искровые промежутки) лишь незначительно выступают в просвет камеры сгорания. При этом расстояние, пробегаемое фронтом горения от точки искры до наиболее отдаленных от нее областей камеры сгорания, максимально велико. А время сгорания ТВС продолжительнее рабочего хода поршня. Чтобы обеспечить достаточно полное сгорание, используется «опережающее» зажигание. Но в данном случае от момента воспламенения до момента достижения поршнем ВМТ действует сила, направленная против вращения вала, снижающая мощность ДВС.

В связи с этим уменьшение времени сгорания ТВС является важной технической задачей. Одним из подходов к решению этой задачи является укорочение длины пробега фронта горения. Это достигается разными путями. Например, применением нескольких свечей зажигания. Использование двух свечей в одной камере, хотя и уменьшает время горения, но при этом значительно усложняет конструкцию ДВС. Другой способ – использование свечей, у которых имеются длинные электроды, выступающие в камеру сгорания.

У части ДВС с центральным расположением свечи имеется значительное расстояние от конца выступающего электрода свечи до дна поршня в ВМТ. Например, в двигателе Лацетти 1,6 это расстояние составляет 12,0 мм с закрученной штатной свечей NGK BKR6E. Таким образом, имеется техническая возможность использования этого пространства для перемещения точки искрообразования ближе к центру камеры сгорания.

Конечно, известно, что выступающая часть свечи будет испытывать более значительные тепловые нагрузки. Но и эта проблема решается подбором необходимых длинных свечей с нужной теплопроводностью, т. е. определенным калильным числом. Кроме этого, современное производство свечей использует новые технологии, которые позволяют эксплуатировать свечи до 2300–2600° С.

В штатном варианте электроды свечи выступают лишь незначительно от плоскости ГБЦ и находятся соответственно в потоке ТВС с более низкой скоростью, так как чем дальше от стенки, тем скорость потока выше. Выступающая же длинная свеча, кроме переноса центра искры ближе к центру камеры сгорания с большей скоростью потока, создает завихрения потока, входящего в цилиндр. Это увеличивает турбулентность его и скорость перемешивания топлива с воздухом, что, в свою очередь, повышает скорость горения.

Эти теории были подтверждены в 2003 году А. И. Громовым патентом на изобретение № 2216838 «Электроискровая свеча зажигания, значительно уменьшающая время сгорания топливно-воздушной смеси в ДВС», в котором описывались длинные свечные электроды, выступающие в камеру сгорания настолько, что точка искры была близка к величине радиуса цилиндра. Техническим результатом явилось уменьшение времени сгорания ТВС. Сами же процессы скоростного горения хорошо описаны А. Н. Войновым в книге «Сгорание в быстроходных поршневых двигателях» и подтверждены высокоскоростной съемкой.

Как известно, теория подтверждается только практикой. Решено было поставить эксперименты на двигателе автомобиля Chevrolet Lacetti 1,6. Для сравнения взяты свечи длиной 19,0 мм – Denso ТТ 20 и 26,5 мм – Denso K20НR-U11. Выступающая часть резьбы длинных свечей была удалена и эта поверхность отшлифована. Так как свечи были с одинаковым калильным числом 20, то для предотвращения калильного зажигания было удалено заводское металлическое уплотнительное кольцо и заменено медным толщиной в 1,0 мм для увеличения теплопроводности.

Проверочный пробег в 50 км для определения температуры свечи по цветам побежалости на отшлифованной поверхности показал, что имеется температурный запас у длинных свечей Denso K20НR-U11 в пределах 200° С до порога калильного зажигания, которое может возникать около 900° С. Пробные заезды на коротких и длинных свечах показали субъективные преимущества последних: более динамичный подхват на малых оборотах и более скоростные характеристики авто.

Но полагаться на ощущения не принято, поэтому было решено провести объективные замеры со снятием параметров с электронного блока управления (ЭБУ). Для этого использовались диагностический разъем ODBII, соединительный кабель, нетбук и программа для диагностики автомобилей Chevrolet Explorer (СЕ) (http://www.samdiagnost.ru/).

Была придумана методика сравнения без влияния человеческого фактора. Поэтому каждый старт выполнялся по одному и тому же горизонтальному участку в две стороны с разворотом. По два старта с ходу при +85° С ДВС со второй скорости равномерно установившегося движения (10 км по GPS) без нажатия педали газа, затем педаль газа быстро нажималась до упора в пол и автомобиль разгонялся без переключения МКП до 5500 об/мин. Далее выполнялась замена свечей на следующий комплект. Было проверено несколько комплектов свечей – новые Denso К20ТТ 19,0 мм, Denso K20HR-U11 26,5 мм, NGK 6BKR19,0 мм и свечи Finwhale 19,0 мм с пробегом в 15 тыс. км.

Анализ данных показал, что «углубления» центра искры в камеру сгорания на 6,8 мм вполне достаточно, чтобы получить лучшую динамику как на низких оборотах, так и на высоких. Средние же обороты (3000–3500 об/мин) были также лучше, но в меньшей степени. Выигрыш длинных свечей на средних оборотах составил 0,15 с, на низких и на высоких оборотах 0,3 с.

Штатные NGK (19 мм) «отстали» от длинных Denso на 1,1 с, а от коротких Denso на 0,8 с. Учитывая, что на 5500 об/мин на второй передаче Lacetti развивает скорость 70 км/ч, то длинные свечи переместили авто на 5,8 м дальше, чем короткие той же фирмы при прочих равных условиях!

Пробные забеги выполнялись с одним кольцом, дабы определить максимальную температуру свечи. Потом были установлены по три медных кольца с суммарной толщиной в 2,7 мм. Для спокойствия и профилактики калильного зажигания и увеличения ресурса свечи уменьшили расстояние с максимально возможного в 11,2 мм до расстояния в 9,4 мм, тогда как штатная свеча NGK BKR6E точку искры имеет на 2,6 мм от ГБЦ. Перемещения центра искры в камеру сгорания на 6,8 мм от штатного вполне достаточно, чтобы получить лучшую динамику во всем диапазоне оборотов ДВС.

В эксперименте и в дальнейшей эксплуатации использовались длинные свечи с тем же калильным числом, что и штатные, поэтому есть еще резерв с использованием длинных свечей, но с более «холодным» числом, к примеру, 22 по Denso. На момент написания статьи автомобиль с длинными свечами пробежал уже 25 тыс. км. Состояние каждой свечи – отличное!

В зависимости от требований ко времени горения смеси длина выступающих внутрь камер сгорания электродов может быть определенной для каждого ДВС в пределах возможного расстояния до дна поршня в ВМТ. Благодаря этому пробег фронта горения смеси до отдаленных областей названной камеры укорачивается.

Кроме этого, предлагаемая модернизация позволяет сместить точку зажигания на несколько угловых градусов позднее обычного, но с той же полнотой сгорания смеси. При этом возникающая сила, направленная против движения вала до ВМТ, чуть меньше, чем в штатном варианте.

Следовательно, применение более длинных свечей, но с подобранным необходимым калильным числом, позволяет повышать динамику авто, коэффициент полезного действия ДВС и топливную экономичность без снижения ресурса двигателя.

Юрий Богданов, г. Липецк

Журнал «АБС-авто» © 2024, все права защищены