Первый автосервисный журнал
Издается с 1997 года

«Экспертиза технического состояния и причины неисправностей автомобильной техники». Отрывок из книги. Глава 5

«Экспертиза технического состояния и причины неисправностей автомобильной техники». Отрывок  из книги. Глава 5

5. Исследование технического состояния двигателя

Поиск неисправностей и их причин во многих случаях неизбежно приводит к необходимости изучения состояния деталей механической части. Действительно, на деталях могут быть следы износа и повреждений, которые могут указывать на причину неисправности. В таком случае без разборки выявить причину неисправности невозможно.

Совершенно очевидно, что разборка является одним из завершающих этапов исследования двигателя и должна проводиться тогда, когда остальные этапы уже выполнены. Однако на практике значительное количество исследователей нередко совершает стандартную ошибку – проводит разборку двигателя без проведения тех работ, которые должны предшествовать разборке. В первую очередь речь идет о подробно описанной в предыдущем разделе безразборной диагностике, когда многие признаки повреждений можно выявить простыми диагностическими методами.

Понятно, что при выполнении необоснованной и/или поспешной разборки двигателя некоторые важные признаки теряются, причем теряются безвозвратно. Примеры подобной утери данных весьма многочисленны. Так, например, следует напомнить об осмотре цилиндров с помощью эндоскопа – этим способом можно выявить характерное замасливание различных зон камер сгорания. Если замаслены тарелки клапанов, иногда даже со следами стекания масла с их нижнего края по стенке камеры, – это типичный признак негерметичности уплотнений стержней клапанов (маслосъемных колпачков) и/или износа направляющих втулок. Если же головки клапанов сравнительно сухие, а в верхней части цилиндра круговая зона замасливания, – это типичный признак износа или повреждения поршневых колец. Однако стоит только разобрать двигатель, как все эти признаки окажутся неочевидными и фактически утерянными.

Можно привести и более элементарные примеры потерь от необоснованной или поспешной разборки:

• масло и охлаждающая жидкость – после разборки определить, каков был их уровень в двигателе, не представляется возможным;

• данные системы управления (диагностика) – включение зажигания после разъединения проводки при разборке двигателя даст огромное количество ошибок, что затруднит выявление тех из них, которые могли бы быть перед разборкой. А в некоторых автомобилях после отключения АКБ при снятии двигателя данные в памяти блока управления через небольшое время вообще безвозвратно стираются;

• течь масла и охлаждающей жидкости – определить место течи после разборки двигателя трудно, а в некоторых случаях практически уже невозможно.

5.149. Характер разрушения шатуна похож на то, как это бывает при масляном голодании, чем может ввести в заблуждение – в таком случае, чтобы найти признаки реальной причины неисправности, требуется двигатель разобрать полностью
5.149. Характер разрушения шатуна похож на то, как это бывает при масляном голодании, чем может ввести в заблуждение – в таком случае, чтобы найти признаки реальной причины неисправности, требуется двигатель разобрать полностью

Дизельный двигатель объемом 2,1 л микроавтобуса вскоре после капитального ремонта внезапно застучал. Владелец на эвакуаторе доставил машину на СТО и потребовал вызвать эксперта. Прибывший вскоре некий очень «грамотный» специалист, назвавшийся экспертом, попросил завести двигатель, а услышав громкий стук коленвала, не стал долго раздумывать и, махнув рукой, дал указание двигатель разобрать, поскольку «и так все ясно». Однако после разборки никаких неисправностей в механической части найти не удалось – как и виновного в необоснованной разборке. Причина же обнаружилась при проверке топливной аппаратуры – в один из распылителей попала грязь…

Все эти примеры свидетельствуют о том, что разборка двигателя не может быть и не является некоей самоцелью исследователя, пытающегося сразу и во чтобы то ни стало заглянуть внутрь двигателя. Напротив, это лишь очередной этап исследования, который должен следовать за другими, не менее важными этапами. Совершенно очевидно, что пропуск тех или иных этапов приведет к невосполнимым потерям признаков неисправности, поэтому соблюдение правильного порядка выполнения исследовательских работ имеет ключевое значение для правильного определения причины неисправности.

Исходя из этого, разборка двигателя может проводиться только на заключительной стадии работ, когда все возможные операции, которые должны проводиться на собранном и установленном в автомобиле двигателе, уже проведены. Фактически это означает, что разборка двигателя является заключительным (или одним из заключительных) этапом работы при исследовании неисправности двигателя.

Но помимо порядка выполнения работ, исследователь должен учитывать и обоснованность их выполнения. Разборка двигателя относится к работам, которые существенно изменяют свойства не только двигателя, но и автомобиля в целом, фактически переводя и тот и другой в неработоспособное состояние. Такое превращение, если оно делается с целью определения причины неисправности, относится к так называемым методам разрушающего контроля и требует от исследователя обоснования – насколько серьезные имелись признаки, и насколько серьезная предполагалась неисправность в двигателе, что в обязательном порядке требовалась разборка путем его разрушения?

Действительно, когда двигатель работоспособен, но его, тем не менее, разбирают, то именно в таких случаях разборка и может оказаться необоснованной – есть риск не найти причины тех признаков неисправности, которые двигатель имел перед разборкой. Именно здесь следует соблюдать наибольшую аккуратность и исключать торопливость, поскольку свойства объекта исследования после разборки окажутся серьезно изменены, и в результате исследования состояние объекта перейдет из рабочего в нерабочее. Если же речь идет об экспертных исследованиях, то обязательно следует запросить заказчика (собственника, суд) разрешения провести такие исследования, обосновав их необходимость. В противном случае исследователь рискует своими действиями нанести ущерб владельцу (собственнику) автомобиля.

Напротив, если двигатель к моменту начала исследования уже неработоспособен и, в частности, имеет явные признаки серьезных повреждений (к примеру, проломы стенок блока цилиндров, заклинивание коленчатого вала и т. д.), то само наличие таких повреждений уже является обоснованием дальнейшего демонтажа и разборки. При этом сама серьезность повреждения требует проведения именно полной разборки двигателя, в противном случае при частичной разборке можно «потерять» важные признаки и не найти причины неисправности. В данном случае можно даже говорить о необоснованном невыполнении полной разборки (путем частичной разборки) как некоей разновидности необоснованной разборки в целом.

С другой стороны, неисправный и уже неработоспособный двигатель в подавляющем большинстве случаев требует (или потребует в дальнейшем) полной разборки, но не столько для установления причины неисправности, сколько главным образом с целью дефектовки и последующего восстановительного ремонта. Тогда, если двигатель уже неработоспособен, а разборка выполняется лишь частично, это не дает исследователю полной информации об объекте. Поэтому для неработоспособного состояния двигателя понятия обоснованности и/или необоснованности разборки имеют смысл, скорее, с точки зрения правильности поиска причины неисправности и, может быть, способа хранения уже неработоспособного двигателя – в сборе на автомобиле или подетально на складе, а не разрушения объекта с утратой им работоспособности (он уже неработоспособен вследствие неисправности). В подобном случае речь может идти не о неправильном действии, а, скорее, о невыполнении необходимого действия, т. е. о бездействии исследователя – необоснованном выполнении лишь частичной разборки вместо полной.

Примером необоснованной частичной разборки может служить часто практикуемое некоторыми исследователями снятие поддона картера с целью осмотра вкладышей подшипников заклинившего коленвала – исследователь с помощью подобной быстрой проверки видит только отдельные следствия, а именно некоторые (причем не все) поврежденные вкладыши, но никак не может увидеть всю картину и, тем более, причину, по которой масло перестало к ним поступать. В дальнейшем недостаток информации о повреждении деталей практически наверняка не даст ему сделать правильный вывод о причине неисправности.

Бензиновый двигатель 2,0 л автомобиля среднего класса вышел из строя – блок цилиндров и поддон картера пробиты, один из шатунов разрушен. Прибывший на место происшествия бойкий и исключительно «грамотный» специалист потребовал поднять автомобиль на подъемнике, осмотрел двигатель снизу и дал указание демонтировать поддон. Как только это было сделано, а крышки шатунов откручены, специалист пощелкал фотоаппаратом и с умным видом отбыл для подготовки заключения. Через несколько недель такое заключение действительно появилось – в нем было указано, что неисправность имеет эксплуатационный характер, а ее причина в ненадлежащем исполнении водителем требований инструкций в части контроля за уровнем масла.

Однако дальнейшее исследование причины неисправности показало совсем другую причину – в цилиндре был гидроудар, через несколько тысяч километров шатун разрушился в средней части стержня, а поскольку это произошло при высокой частоте вращения, оставшаяся без стержня нижняя головка шатуна повернулась на шейке и после удара головкой болта в нижний край цилиндра полностью разрушилась. Но так как и эта причина носила «эксплуатационный характер», специалист почти «угадал»…

Как уже отмечено выше, наиболее сложные для практики случаи – когда признаки неисправности двигателя вроде бы есть, но носят неявный или скрытый характер. К таким неисправностям относятся в первую очередь различные шумы и стуки. По отношению к подобным признакам можно уже судить о профессионализме исследователя. Например, грамотный специалист, даже услышав посторонний шум, вряд ли сразу потребует разборки двигателя – наоборот, потратит значительное время на безразборные исследования. Либо вообще откажется от исследований, с целью выявления более четких признаков неисправности при дальнейшей эксплуатации. Менее опытный исследователь, напротив, предпочтет, не задумываясь, поскорее все разобрать, чтобы потом не найти никаких повреждений. Практика показывает, что в результате такому «исследователю» приходится выдумывать несуществующие причины стука, в противном случае к нему возникнут вопросы, зачем двигатель был разобран, и кто теперь будет оплачивать убытки владельца?

5.2.4.1. Некоторые важные особенности разборки двигателя

Если все имеющиеся в руках исследователя способы и средства использованы, все возможные безразборные исследования проведены, и совершенно точно установлено, что работоспособный двигатель имеет неисправность, – только тогда можно приступать к разборке двигателя. Поскольку признаки неисправности нередко скрыты внутри двигателя, можно сказать, что разборка проводится с целью подтверждения тех или иных версий неисправности, выдвинутых на предварительном этапе безразборной диагностики.

Сама разборка двигателя выполняется силами ремонтного предприятия, где проводится исследование, что должно быть соответствующим образом организационно спланировано и согласовано. Практика показывает, что стороны спора, участвующие в разборке двигателя, должны быть уведомлены о месте и времени заранее.

В процессе разборки двигателя необходимо проверять признаки, соответствующие тем ли иным версиям, однако не следует исключать, что в процессе разборки могут быть обнаружены признаки совсем иной неисправности, нежели выдвинутая на предварительном этапе. В соответствии с этим в процессе выполнения разборки двигателя исследователь, чтобы не упустить важные признаки, нередко вынужден держать в голове сразу много версий с их признаками для проверки.

Разборка сама по себе никаких трудностей не представляет, однако имеет некоторые особенности для различных автомобилей. Так, многоцилиндровые двигатели, как правило, требуют значительного времени на демонтаж из автомобиля, в то время как наиболее распространенные 4-цилиндровые двигатели снимаются обычно за несколько часов. В результате исследователь вряд ли сможет выполнить полное исследование многоцилиндрового двигателя за один рабочий день, в отличие, например, от 4-цилиндрового, и должен планировать затраты времени.

Обычно снятие и разборка двигателя начинается со слива масла и рабочих жидкостей, что является достаточно важной операцией для дальнейших исследований, поскольку говорит и о количестве данных жидкостей на момент исследования, и об их состоянии в целом. В соответствии с этим не рекомендуется, как это часто делается на СТО, сливать жидкости и масла в некую общую емкость для последующей утилизации – наоборот, для слива должны быть подготовлены соответствующие чистые емкости. Далее, если возникла необходимость, из таких емкостей можно отобрать пробы для дальнейшего анализа.

При выполнении исследований, связанных с качеством выполненных ранее ремонтных работ, иногда возникает потребность определить моменты затяжки болтов тех или иных соединений. К сожалению, в большинстве случаев здесь действует полное непонимание простейших технических процессов, особенно у наиболее «продвинутых» исследователей.

Как известно, затяжка многих резьбовых элементов выполняется на определенный крутящий момент. В процессе поворота болта за счет усилия затяжки очевидным образом растет крутящий момент. Далее, при достижении заданного момента, затяжка прекращается. Теперь требуется решить обратную задачу, которую нередко решают и самые «грамотные» исследователи – определить, а с каким моментом был затянут этот болт? Нет ничего проще – надо взять тот же самый динамометрический ключ, и при отворачивании он легко покажет искомый момент.

На самом деле такая проверка лишена всякого смысла. Причина проста, как и сама проверка, – момент на отворачивание заведомо не соответствует моменту на заворачивание, причем разница легко может быть и в 2 раза. Хотя это нисколько не смущает «продвинутых» исследователей – возможно, им и в голову не приходит, почему так, и зачем надо как-то иначе.

Ошибка же кроется в элементарной физике – при заворачивании болт испытывает трение скольжения, а при отворачивании, в момент страгивания – трение покоя, которое может быть намного больше. На практике это выглядит так, как будто болт «прикипел», и ему требуется дополнительное усилие на отворачивание – «щелчок», чтобы стронуться с места. Что и приводит к ошибке. Правильное же действие в данном случае – это точно зафиксировать угловое положение головки болта относительно детали, стронуть болт и незначительно отвернуть его, а затем завернуть точно в исходное угловое положение. Сложно? Конечно. Поэтому зачем так делать, когда и так все ясно?

К сожалению, даже такие сложные проверки затяжки болтов не всегда применимы. Многие ответственные резьбовые соединения в современных двигателях тянутся не на момент, а на предел текучести болта. Это значит, что при затяжке вначале дается только некий начальный крутящий момент, после которого болт заворачивается обычно за два шага на заданный угол, при котором момент не контролируется. В результате болт фактически выходит на предел текучести, при котором усилие затяжки постоянно. В таком случае найти, какой момент был при предварительной затяжке и на какой угол поворачивался потом болт, вообще невозможно – можно только найти, какому крутящему моменту соответствует эта затяжка, но сравнить этот результат практически не с чем.

С этой же проблемой связана еще одна – а каким ключом предполагает исследователь выполнить такое измерение? Если он запланировал использовать тот же ключ, которым на СТО затягивают болты при обычной работе, то, значит, он вообще не подготовился к исследованию, и ему придется переносить его на другой день. Дело в том, что в подавляющем большинстве СТО используются динамометрические ключи предельного или так называемого «щелчкового» типа – у них регулируется индикация только предельного момента срабатывания «щелчка». Но тогда при отворачивании нельзя точно установить никакой момент на таком ключе – как и определить момент затяжки болта.

Для подобной операции подходят только ключи с непрерывной индикацией крутящего момента – стрелочной или цифровой. И такой ключ, скорее всего, придется найти или даже приобрести исследователю, чтобы выполнить измерение искомого момента затяжки – вряд ли такой ждет его на СТО. А далее, после получения данных о моменте, придется с чем-то их сравнивать. Но сравнивать можно только с самыми грубыми оценочными данными, например, с ориентировочном максимальным моментом затяжки, рассчитанным по известной формуле М = (50…60) d, где М – момент затяжки, Нм, d – диаметр резьбы болта, мм.

Другими словами, исследователь, взявшись за измерение момента затяжки болтов и оснастившись с этой целью специальным инструментом, сможет ответить только на вопрос «Был ли этот болт затянут?». Ответить же на вопрос «А с каким моментом был затянут этот болт?», исследователь, скорее всего, никак не сможет. И об этом надо помнить при планировании подобных исследований. Именно по этой причине на практике следует избегать таких исследований и искать другие признаки, не связанные с плохо подготовленными экспериментами и/или их невнятно объясняемыми результатами. Хотя понятно, что для самых «грамотных» и «продвинутых» все эти нюансы – не более чем пустой звук.

При разборке двигателя следует также обращать внимание на другие признаки – например, на наличие масляного нагара в отсоединяемой системе выпуска. Или на наличие масла во впускных трубопроводах, что особенно важно для двигателей с турбонаддувом. Важно также не забыть зафиксировать номер двигателя, который становится легко доступен после снятия агрегата – номер может числиться в документах или в базе данных производителя и подтверждает, к примеру, что автомобиль был произведен на заводе-изготовителе именно с этим двигателем. Однако в целом объем и предмет проверок в процессе снятия и разборки двигателя определяет сам исследователь исходя из имеющихся признаков, предварительных версий причины неисправности и других факторов, поэтому давать какие-либо рекомендации здесь трудно – гораздо важнее знать, что делать с уже разобранным двигателем.

5.2.4.2. Основные виды повреждений деталей двигателя

Многие исследователи так сильно стремятся во что бы то ни стало разобрать неисправный двигатель, что возникает вопрос – а что они хотят там найти? После ознакомления с их отчетами (заключениями) этот вопрос все равно остается открытым – во многих случаях исследователь или не нашел, чего искал, или нашел, но почему-то не то. Поэтому возникает следующий законный вопрос – а знал ли он, что надо искать? Может, и разбирался двигатель по его требованию напрасно?

Чтобы точно знать, что искать, надо хорошо представлять, какие повреждения могут произойти с деталями. Понятно, что все повреждения хорошо отражаются во внешнем виде детали, и не только ее одной, но и сопряженных с ней деталей тоже. Тогда исследователь должен искать поврежденные детали, хорошо себе представляя, какие внешние признаки и о каких видах повреждений говорят.

Практика эксплуатации и ремонта ДВС показывает, что любое повреждение и/или разрушение в двигателе может быть вызвано в общем случае четырьмя причинами, которые делят повреждения на четыре основных вида.

1. Разрушение от механической нагрузки, в том числе:

– разрушение от перегрузки;

– усталостное разрушение.

2. Тепловое повреждение.

3. Износ.

4. Коррозия.

Каждое из указанных видов повреждений имеет собственные признаки, включая внешние, видимые даже невооруженным глазом. Поэтому, прежде чем подходить к разобранному двигателю и осматривать его детали, необходимо разобраться с каждым из этих видов повреждений – просто чтобы знать, что искать. Хотя «грамотному» исследователю многое из того, о чем пойдет речь ниже, сложно, а потому и неинтересно. И наиболее «продвинутым» это тоже все лишнее – они и так все знают.

5.2.4.2.1. Разрушение от механической нагрузки

Определений разрушения от механической нагрузки достаточно много, но с точки зрения механики это зарождение и развитие в материале дефектов и/или разделение объекта на части в результате разрыва связей при механической нагрузке. При этом разрушение может быть вязким, тогда оно сопровождается развитием пластических деформаций в материале, или хрупким, при котором следов пластических деформаций нет, а также усталостным – под действием повторно-переменных (часто циклических) напряжений.

Экспериментально установлено, что любому разрушению предшествуют начальный период и развитие, которые имеют определенные причины. В зависимости от конкретных обстоятельств ход разрушения может быть как предопределен заранее, так и развиваться совершенно по-разному. Внешняя нагрузка играет в этом процессе главную роль – она создает нормальные (перпендикулярные сечению) и тангенциальные (сдвиговые) усилия на деталь, которые при достаточной величине и при определенных условиях приводят к ее разрушению.

Разрушение детали всегда следует определенной схеме, или механизму разрушения, который устанавливает следующий порядок событий, приводящих к разрушению:

1) образование трещины;

2) рост трещины;

3) распространение трещины;

4) разрушение.

Трещины возникают при нагружении детали и/или в результате ее собственных внутренних напряжений, которые могут быть вызваны следующими причинами.

1. Внутренние дефекты – например, поры, посторонние включения в материал и т. д.;

2. Внешние факторы, в том числе:

• так называемые концентраторы напряжений, такие как переход с одного диаметра на другой у ступенчатых валов, различные отверстия (масляные каналы) и т. д.;

• области с переменной жесткостью детали – например, ступенчатые отверстия в тонких деталях, переходы к ребрам жесткости или усилениям и т. д.;

• повреждение поверхности при механической и химико-термической обработке, во время хранения и/или сборки узла, в результате коррозии, фреттинг-коррозии (коррозии под напряжением) и т. д.

Трещины представляют собой вырезы в теле детали, которые приводят к высоким внутренним напряжениям в материале в этих местах, причем скачки напряжения прямо действуют на дальнейшее углубление трещины. В зависимости от внешних и внутренних условий трещина может расти очень медленно или даже вообще перестать расти с уменьшением нагрузки. Но чаще происходит рост трещины, который представляет собой ускоренное увеличение глубины трещины. В некоторых случаях скорость распространения трещины может быть очень высокой (вплоть до скорости звука), что определяет «взрывное» хрупкое разрушение. Переход между режимами распространения трещины определяется ее длиной, которая зависит от нагрузки, ее характера и времени приложения, а также от температуры материала.

5.2.4.2.1.1. Разрушение от перегрузки

Такой вид разрушения возникает вследствие превышения предела прочности материала при статическом (неизменном по времени) нагружении детали или при динамическом (ударном) воздействии. Как известно, разрушение детали при статической (неизменной по времени) нагрузке происходит тогда, когда внутренние напряжения в материале от действия сил превышают так называемый предел кратковременной прочности материала. Эта характеристика материала показывает, при какой постоянно приложенной силе деталь с заданной площадью поперечного сечения будет разрушена.

Данный вид разрушения также связан с распространением трещины в материале детали. При этом разрушение можно разделить на хрупкое, когда деформация около зоны разделения (излома) детали отсутствует, и вязкое, при котором не только может быть видна зона деформация, но и само превышение максимально допустимой деформации могло стать причиной разрушения. Возможны также промежуточные состояния.

Хрупкие разрушения от разрушающей нагрузки при отсутствии видимой деформации характеризуются равномерным изломом, который имеет поверхность с грубой шероховатой структурой, которая возникает при распространении трещины, главным образом по границам зерен материала. Данный вид разрушения у материалов с невысокой пластичностью (сталь, чугун, алюминиевые сплавы), с одной стороны, нередко характеризуется угловым скосом у излома, иногда с характерным «зубом», а с другой – сравнительно равномерной сильно шероховатой структурой излома.

Хрупкий излом обычно происходит по границам или через зерна металла, при этом обычно образуется достаточно равномерое матовое сечение, в котором даже при не слишком большом увеличении видна «рваная» ручейковая структура поверхности с мелкими ступеньками сколов. Если трещина возникла в результате нагрузок сдвига, то такое сдвиговое разрушение происходит от сдвигового слоя к слою сдвига, образуя чередующиеся ступенчатые поверхности разрушения. Однако характер распространения хрупких трещин зависит в целом от многих факторов – места приложения и величины нагрузки, конфигурации детали, вырезов и мест с резкими изменениями сечений, ограниченной деформируемостью материала, микроструктурными неоднородностями, и др., вследствие чего хрупкая трещина может принимать различные формы. В нормативно-технической документации и технической литературе можно найти соответствующие образцы изломов для многих материалов деталей ДВС.

Следует иметь в виду, что на практике все детали и узлы ДВС работают в условиях циклического знакопеременного нагружения, поэтому разрушение от статического приложения нагрузки практически не встречается. Разрушение от динамической нагрузки характерно лишь как вторичное разрушение в фазе развития неисправности, поскольку при нормальной работе ДВС детали практически не испытывают никаких ударных нагрузок, тем более – имеющих разрушающий уровень.

Адрес редакции

111033 Москва, ул. Самокатная, 2а, стр.1, офис 313

На карте

Контакты

Тел.: (495) 361-1260

E-mail: dostavka@abs-magazine.ru

Социальные сети

Журнал «АБС-авто» © 2019, все права защищены